Introduction

The pharmacokinetic (PK)/pharmacodynamic (PD) relationships of antimicrobials and their efficacy in the control of gut infections have been infrequently reported. It was the purpose of this paper to examine the PK/PD relationships of valnemulin (Econor, Sandoz Ltd), a pleuromutilin antibiotic, approved for administration via the feed, for the prevention, treatment and possible elimination of swine dysentery, caused by Brachyspira hyodysenteriae, with the results from artificial challenge studies.

Materials and methods

a. Pharmacokinetics

The colon contents concentration (CCC) for valnemulin, after giving feed containing 75ppm valnemulin (treatment level) achieved a level of 1.68µg/ml in the large intestine (ref. product information). As the CCC is a relatively steady concentration due to its slow passage, the area under the curve (AUC) 24 hours was calculated at 40.39g hr/ml (CCC x 24) and extrapolations of CCC and AUC at different in-feed inclusion levels were based on these figures.

b. Pharmacodynamics – Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) of B. hyodysenteriae

Valnemulin is primarily a bacteriostatic-acting antibiotic, which is highly active against B. hyodysenteriae and the MBC has not been reported previously. Originally the MIC for the strain of B. hyodysenteriae used in the challenge studies was reported at 0.0125µg/ml in broth cultures, using doubling dilutions of valnemulin. It was reported that it was very difficult to perform MBC agar plate test, using doubling dilutions of valnemulin. It was therefore decided to do the MIC test using broth dilution methods and also sub-culturing into broth with tests from plate tests (Burrows, personal communication).

Results and calculations

a. Pharmacokinetics

For valnemulin at 75ppm – CCC = 1.68µg/ml; AUC 24hrs 40.39g hr/ml (CCC x 24).

b. Pharmacodynamics – MIC and MBC

MIC of valnemulin = 0.003µg/ml; MBC of valnemulin = 0.0125µg/ml in broth cultures.

c. Artificial challenge studies

Prevention study – levels of 10ppm and above completely prevented the development of swine dysentery, gross lesions and the growth and re-isolation of the organism at autopsy (see graph 1).

Treatment study – At the end of the 14-day observation period, in the 30ppm valnemulin group, 12.5% had relapsed and 25% of the pigs had gross lesions. B. hyodysenteriae was isolated from 62.5% of the 50ppm treated pigs, 12.5% from the 75ppm group and 0% from the 100ppm group (see graph 2).

Calculations

Inclusion (ppm) 10 50 100

Effect

bacteriostatic bacterioidal elimination

CCC (µg/ml) 0.22 1.13 2.24

CCC/MIC 74 37.7 74.7

AUC/MBC 18 90 180

AUC/MBC 18.00 90.00 180.00

AUC/MBC 432 2160 4320

Discussion and conclusions

Commonly the plasma parameters used for successful treatment with bacterioidal compounds such as the aminoglycosides are Cmax/MIC = 10 and the fluoroquinolones AUIC = 10 (Toutain, 2003). These figures are substantially exceeded by the ratios for valnemulin in the prevention and treatment of a colonic infection, swine dysentery. One hundred and eighty times (180) the CCC/MBC and 4320 the AUC/MBC was required to eliminate B. hyodysenteriae.

The MIC is not probably the best parameter to use if a bactericidal activity is to be compared, especially with primarily bacterioidal compounds. The MBC gives a more comparable result, as has been demonstrated for enzootic pneumonia (mycoplasmal) infections in pigs (Burch, 2004). In the case of swine dysentery treatment, other factors must come into play such as faecal binding, which may affect the bioavailability and diffusion of valnemulin from the colon, although precise information on this is not available.

The difference in MIC against B. hyodysenteriae using different methods such as broth dilution and agar plate is quite dramatic with an eight-fold difference (four dilutions) in this case, highlighting the need to standardize methods when trying to make assessments. Interestingly the MBC by broth is similar to the MIC by agar plate (two-fold difference or one dilution).

The artificial challenge studies highlight that prevention of swine dysentery is a valid claim, as a dose-titration effect can be observed and a bacterial cure is achieved. The likelihood of bacterial resistance is reduced as few, if any, bacteria are left to mutate (Ripley – personal communication). The treatment study demonstrates that a clinical cure may be achieved without a complete bacterial cure and at least 5-10 times the amount of valnemulin is required to penetrate the large intestine and destroy the bacteria in contact with prevention. The bacteria colonise deep into the colonic crypts (see photo) and a greater concentration gradient needs to be achieved to counter mucus, exudate, even haemorrhage and other inflammatory debris (Toutain et al, 2002) flowing in the opposite direction. Incomplete kill in the case of treatment may actually encourage the development of resistance but fortunately this is relatively slow (83 passages) with regard to valnemulin (Karlsson et al, 2001)

In conclusion, the classical PK/PD parameters used for systemic infections such as Cmax/MIC and AUIC, when modified to CCC/MIC and AUIC or even CCC/MBC and AUIC/MBC ratios cannot be simply applied to valnemulin and B. hyodysenteriae for the treatment and elimination of swine dysentery as other factors come into play. A different model needs to be required.

References


In the treatment study (Burrows et al 1996b), valnemulin was given in feed at 0, 50, 75 and 100ppm for 10 days following the outbreak of disease in the pigs. All of the valnemulin-treated pigs responded clinically and were negative for B. hyodysenteriae culture at the end of treatment. After a further 14-day observation, the pigs were necropsied and their colons examined for lesions and cultured as before.

In conclusion, the classical PK/PD parameters used for systemic infections such as Cmax/MIC and AUIC, when modified to CCC/MIC and AUIC or even CCC/MBC and AUIC/MBC ratios cannot be simply applied to valnemulin and B. hyodysenteriae for the treatment and elimination of swine dysentery as other factors come into play. A different model needs to be required.

For the prevention and treatment of swine dysentery, gross lesions and isolation of B. hyodysenteriae - disease, lesions and isolation of B. hyodysenteriae – disease, lesions and isolation of B. hyodysenteriae, 1, Paul Ripley 2, Mervyn Burrows 3

1 Octagon Services Ltd, Old Windsor, Berks, UK, 2 Novartis Animal Health, Littleton, Herts, UK, 3 Institute for Animal Health, Compton, Berks, UK

Graph 1. Prevention of swine dysentery with valnemulin – disease, lesions and isolation of B. hyodysenteriae

Graph 2. Treatment of swine dysentery with valnemulin – disease, lesions and isolation of B. hyodysenteriae