Antimicrobial resistance – veterinary and public health concerns in Europe

David Burch, Veterinarian, Octagon Services Ltd, Old Windsor, Berkshire, UK

Antimicrobial resistance in animals and its potential to spread to man has become one of the hot issues involving scientists, regulators and politicians in Europe. What to do about it seems to be the main subject; should we ban certain drugs (Danish approach), ban in-feed antimicrobial use (Dutch approach), should we limit their availability and distribution or ban them completely in animals? Currently, this is under consideration by the European Commission (DG Sanco). In the meantime, each country is adopting or has adopted its own approach to managing the problem. My concern is that radical reforms are being contemplated for political reasons, when even the latest report from EFSA BIOHAZ (2011) committee states that the establishment of risk factors is complicated by 'data unavailability' or the 'lack of its accuracy'. This sounds like the same confusion over the banning of antimicrobial growth promoters on the basis of the 'precautionary principle', when really, by now, we should be making informed decisions on a good scientific basis.

Antimicrobial resistance development

Antimicrobial resistance and its development is a complex subject. Originally, it was a natural defence mechanism of bacteria to fight against naturally occurring antibiotics, which are produced by a number of fungi and bacteria in the wild, to aid their survival. Now we are artificially exposing them to antibiotics as we treat animals, to fight disease. Antibiotics are produced commercially by fermenting these fungi and bacteria and extracting the antibiotic (e.g. penicillins, tetracyclines, aminoglycosides) or frequently adding side chains and producing semi-synthetic antibiotics (e.g. amoxycillin, methicillin, cephalosporins) with different or improved spectra of activity, pharmacokinetics or efficacy. There are also fully synthesised antimicrobial compounds, like the sulphonamides, trimethoprim and the fluoroquinolones. Each antimicrobial family and its sub-groups has its own mode of action and thereby each bacterial or mycoplasmal species develops its own way of countering the antimicrobial, as a defence or resistance mechanism, so that it can survive and continue to live in the environment it inhabits e.g. the gut, the respiratory tract etc. The main antimicrobial families, their mode of action and common resistance mechanisms are summarised in Table 1.

Antimicrobial family	Mode of action	Resistance mechanism
Beta-lactam antibiotics	Inhibit cell wall production. Binds	-Beta-lactamase production primarily – <i>bla</i> genes.
Penicillins:	enzymes (PBPs) which help form	-Changes cell wall protein enzymes so that they
Penicillin G, penicillin V	peptidoglycans.	cannot bind to PBPs. MecA gene for methicillin
Methicillin, oxacillin		resistance – S. aureus.
Ampicillin, amoxycillin		-TEM-1, TEM-2, SHV-1 type beta-lactamase (bla)
Piperacillin		producing genes - plasmid transfer usually
Cephalosporins:		-Cephalosporinases
1 st and 2 nd generation		
Cephalexin, cephradine		
3 rd and 4 th generation		-Extended-spectrum beta lactamases (ESBLs)
Ceftiofur, cefquinome		CTX-M beta-lactamase (bla) genes – plasmid
Cefotaxime, ceftazidime		transfer usually (better - expanded spectrum
(human use)		cephalosporinases - ESCs)
Monobactams:		
Aztreonam		
Carbapenems:		-Carbapenemases - KPC, CMY (bla) genes – serine
Imipenem, meropenem		based; IMP and VIM – metallo beta-lactamase (bla)
		enzyme genes (Zn dependent)
Beta-lactamase inhibitors	Inhibits/binds to beta-lactamase	 -AmpC gene (bla_{CMY} sub-group) – cephalosporinase;
Clavulanic acid, sulbactam	enzymes	Metalloenzyme genes – inhibitor resistant genes

Table 1. Antimicrobial family, mode of action and common resistance mechanism

tazobactam mecA gene - cannot bind to PPBs; Polymixins Collstin Action on cell membrane – disrupts permeability Unclear – decreased bacterial permeability Tetracyclines Chiortetracycline, mitoreferes with amino acid transfer Inducible efflux in <i>E. coli</i> etc (<i>tetA</i> , <i>tetB</i> , <i>tetC</i>) Daxycycline, minoglycosides rRNA – binds to 305 subunit, so misreads genetic code. Prevents protein production. Phosphorylation, adenylation and acetylation of aminoglycoside (<i>aph</i> , <i>aod</i> , <i>aoc</i> genes) stops them binding. Aminocyliol Spectinomycin Macrolides/azalides (M) Tylosin, tylvalosin, tilmicosin, tlafcC) rRNA – binding to 50S subunit. Inhibits transpeptidation. Prevents protein production Prevents protein production A and B class Methylation of 23S subunit of rRNA, prevents binding. Prevents protein production A and B class Virginamycin Virginamycin rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B class Methylation of 23S subunit of rRNA in Give orgs Co-resistance possible (<i>mISB</i>). Drug inactivation possible Plearomutiins (P) Tiamulin, valnemulin rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents pr	Antimicrobial family	Mode of action	Resistance mechanism
Polymixins Action on cell membrane – disrupts permeability Unclear – decreased bacterial permeability Colistin disrupts permeability Inducible efflux in <i>E. coli</i> etc (terA, tetB, tetC) Colistin RNA – binds to 305 subunit and interferes with amino acid transfer Inducible efflux in <i>E. coli</i> etc (terA, tetB, tetC) Doxycycline, miocycline Prevents protein production Prevents grotein production Aminog/cosides rRNA – binds to 305 subunit, so misreads genetic code. Phosphorylation, adenylation and acetylation of aminoglycoside (<i>aph, aod, aog genes</i>) stops them binding. Apramycin, gentamicin Apramycin, gentamicin Apramycin, gentamicin (16C) rRNA – binding to 505 subunit. Inhibits transpeptidation. Prevents protein production Methylation of rRNA in G+ve orgs (<i>ermA, ermB, ermC</i> genes) inhibits binding. Co-resistance possible Tyrydin, tylvalosin, tilminosin (16C) rRNA – binding to 505 subunit. Inhibits peritdyl transferase. Prevents protein production Methylation of 235 subunit of rRNA, prevents binding. Streptogramins (S) rRNA – binding to 505 subunit. Inhibits peritdyl transferase. Prevents protein production A and B class Methylation of 235 subunit of rRNA in G+ve orgs Caresistance possible (<i>mIsB</i>). Drug inactivation possible Prevents protein production A and B class Caresistance possible (<i>mIsB</i>). Drug inactivation of 235 subunit of rRNA (<i>erm</i> genes) Pleuromutilins (P) Tiamulin, valnemuli	tazobactam		mecA gene - cannot bind to PPBs;
Polymixins ColistinAction on cell membrane – disrupts permeabilityUnclear – decreased bacterial permeability inducible efflux in <i>E. coli</i> etc (<i>tetA</i> , <i>tetB</i> , <i>tetC</i>)Tetracycline Oxytetracycline Doxycycline, minocyclinerRNA – binds to 305 subunit and itransferInducible efflux in <i>E. coli</i> etc (<i>tetA</i> , <i>tetB</i> , <i>tetC</i>)Aminoglycosides Streptomycin Apramycin, gentamicin Apramycin, gentamicin Effect on cell membrane permeabilityPhosphorylation, adenylation and acetylation of aminoglycoside (<i>aph, aod, aoc</i> genes) stops them binding.Aminocyclino Apramycin, gentamicin Apramycin, gentamicin Apramycin, gentamicin Apramycin, gentamicin (16C)rRNA – binding to 505 subunit. Inhibits transpectidation. erwents protein production Prevents protein producti			
Colistin disrupts permeability Inductible efflux.r.f. coli etc (tetA, tetB, tetC) Chortetracycline, oxytetracycline, minocycline rRNA – binds to 305 subunit, and interferes with amino acid Inductible efflux.r.f. coli etc (tetA, tetB, tetC) Aminoglycosides rRNA – binds to 305 subunit, so misreads genetic code. Prevents protein production Apramycin, gentamicin Apramycin, gentamicin Spectinomycin rRNA – binds to 305 subunit, so misreads genetic code. Phosphorylation, adenylation and acetylation of aminoglycoside (aph, aad, aca genes) stops them binding. Macrolides/azalides (M) Tylosin, tylvalosin, tilmicosin (16C) rRNA – binding to 505 subunit. Methylation of rRNA in G+ve orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible erxythromycin (15C) Erythromycin (15C) rRNA – binding to 505 subunit. Methylation of z35 subunit of rRNA, prevents protein production Virginiamycin rRNA – binding to 505 subunit. Methylation of 235 subunit of rRNA, prevents protein production Virginiamycin rRNA – binding to 505 subunit. Methylation of z35 subunit of rRNA, prevents prevents protein production Yrginiamycin rRNA – binding to 505 subunit. Methylation of rRNA in G+ve orgs Co-resistance possible (misB). Streptogramins (S) rRNA – binding to 505 subunit. Methylation of rRNA in G+ve orgs Co-resistance to S, M, L and P. Class A – active efflux (a	Polymixins	Action on cell membrane –	Unclear – decreased bacterial permeability
TetracyclinesrRNA – binds to 30S subunit and interferes with amino acid interferes with amino acid interferes with amino acid wytetracycline, minoglycosideInducible efflux in E. coli efflux (tet/l, tet/l, tet/l) Binding site changes (tet/l), tet/l genes) Rare, changes to tetracycline moleculeDoxycycline, minocyclinePrevents protein productionPhosphorylation, adenylation and acetylation of aminoglycoside (aph, aad, aac genes) stops them binding. Streptomycin – single binding site Others – multiple binding sites, slow resistance, primarily plasmidAminocylicolrRNA – binding to 50S subunit. Inhibits transpeptidation. Prevents protein productionMethylation of rRNA in G+ve orgs (ermA, ermB, miraci) plasmidMacrolides/azalides (M) Tylosin, tylusiosin, tilmicosin (16C)rRNA – binding to 50S subunit. Inhibits transpeptidation. Prevents protein productionMethylation of rRNA in G+ve orgs (ermA, ermB, erm2 genes) inhibits binding. Co-resistance possible (m/sB). Active efflux (mef gene) Enzymatic inactivation possibleStreptogramins (S) TyrigniamycinrRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Co-resistance possible (m/sB). Drug inactivation possiblePleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Co-resistance to S, M, L and P. Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes)Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production Prevents protein production <td>Colistin</td> <td>disrupts permeability</td> <td></td>	Colistin	disrupts permeability	
Chloretracycline, oxytetracycline, minocyclineinterferes with amino acid transferBinding site changes (tct), tet/M genes) Rare, changes to tetracycline moleculeDoxycycline, minocyclinePrevents protein productionPhosphorylation, adenylation and acetylation of 	Tetracyclines	rRNA – binds to 30S subunit and	Inducible efflux in E. coli etc (tetA, tetB, tetC)
oxyterzcyclinetransfer Prevents protein productionRare, changes to tetracycline moleculeDoxycycline, minocyclinePrevents protein productionPhosphorylation, adenylation and acetylation of aminoglycoside (<i>ph</i>), <i>aad</i> , <i>aac</i> genes) stops them binding.StreptomycinPrevents protein production.Prevents protein production.Prevents protein production.Apramycin, gentamicinEffect on cell membrane permeabilityStreptomycin - single binding site Others - multiple binding site, slow resistance, primarily plasmidMacrolides/azilles (M) Tulathromycin (15 & 13C)rRNA - binding to 50S subunit. Inhibits transpeptidation. Prevents protein production Prevents protein production A and B classMethylation of rRNA in G+ve orgs (<i>rmA</i> , <i>ermB</i> , erm2 genes) Co-resistance possibleStreptogramins (S) VirginiamycinrRNA - binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Co-resistance to S, M, L and P. Class A = acity efflux and drug inactivation (<i>vgaA</i> , <i>vgaC</i> , <i>msrA</i> genes) Co-resistance to S, M, L and P. Class B - methylation of rRNA in G+ve orgsPleuromutilins (P) Thiamplenicol, florfenicolrRNA - binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A rand B classCo-resistance ensely(<i>vgA</i> , Co-resistance denses(<i>vgA</i> , <i>vgaC</i>) <td>Chlortetracycline,</td> <td>interferes with amino acid</td> <td>Binding site changes (tetO, tetM genes)</td>	Chlortetracycline,	interferes with amino acid	Binding site changes (tetO, tetM genes)
Doxycycline, minocyclinePrevents protein productionAminoglycosidesrRNA – binds to 305 subunit, soStreptomycinmisreads genetic code.Neomycin, KanamycinPrevents protein production.Apramycin, gentamicinEffect on cell membraneAminocylitolpermeabilitySpectinomycinrRNA – binding to 505 subunit.Macrolides/azalides (M)rRNA – binding to 505 subunit.Tylosin, tylvalosin, tilmicosinrRNA – binding to 505 subunit.Inhibits transpeptidation.miscel (and (and (and (and (and (and (and (and	oxytetracycline	transfer	Rare, changes to tetracycline molecule
AminoglycosidesrRNA - binds to 30S subunit, soPhosphorylation, adenylation and acetylation ofStreptomycinmisreads genetic code.aminoglycoside (aph, aad, aac genes) stops themMeomycin, KanamycinEffect on cell membraneStreptomycin - single binding siteAminocylitolperwenbilityOthers - multiple binding sites, slow resistance, primarily plasmidSpectinomycinrRNA - binding to 50S subunit.Methylation of rRNA in G+ve orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible (m/sB).Ative reflux (mef gene)rAtive reflux (mef gene)Enzymatic inactivation possibleZuithromycin (15C)rRNA - binding to 50S subunit.Methylation of rRNA in G+ve orgsLincosamides (I)rRNA - binding to 50S subunit.Methylation of rRNA in G+ve orgsLincosamides (I)rRNA - binding to 50S subunit.Methylation of 23S subunit of rRNA, preventsLincosamides (I)rRNA - binding to 50S subunit.Methylation of rRNA in G+ve orgsVirginiamycinrRNA - binding to 50S subunit.Methylation of rRNA in G+ve orgsVirginiamycinrRNA - binding to 50S subunit.Class A - active efflux and drug inactivation (vgaA, vgaG, msrA genes)VirginiamycinrRNA - binding to 50S subunit.Methylation of rRNA in G+ve orgsPrevents protein productionClass A - active efflux and drug inactivation (vgaA, vgaG, msrA genes)Co-resistance pens)Co-resistance genes)Co-resistance genesCo-resistance genes)Chromosomal mutations - stepwiseMithylation of rRNA in G+ve orgsPrevents protein productionCo	Doxycycline, minocycline	Prevents protein production	
Streptomycinmisreads genetic code.aminoglycoside (aph, aad, aac genes) stops themNeomycin, KanamycinPrevents protein production.Binding.Arramycin, gentamicinEffect on cell membraneStreptomycin – single binding site.AminocylitolPrevents protein production.Chreers – multiple binding site.SpectinomycinrRNA – binding to 50S subunit.Methylation of rRNA in G-ve orgs (ermA, ermB,(16C)rRNA – binding to 50S subunit.Methylation of rRNA in G-ve orgs (ermA, ermB,Tulathromycin (15 & 13C)rRNA – binding to 50S subunit.Methylation of 23S subunit of rRNA, preventsLincosamides (L)rRNA – binding to 50S subunit.Methylation of 23S subunit of rRNA, preventsLincomycin, clindamycinrRNA – binding to 50S subunit.Methylation of rRNA in G-ve orgsVirginiamycinrRNA – binding to 50S subunit.Methylation of rRNA in G-ve orgsVirginiamycinrRNA – binding to 50S subunit.Methylation of rRNA in G-ve orgsVirginiamycinrRNA – binding to 50S subunit.Methylation of rRNA in G-ve orgsVirginiamycinrRNA – binding to 50S subunit.Co-resistance possible (mlsB).VirginiamycinrRNA – binding to 50S subunit.Co-resistance to S, M, L and P.Class B – methylation of rRNA in G-ve orgsCo-resistance to S, M, L and P.Class B – methylation of rRNA in G-ve orgsCo-resistance to S, M, L and P.Class B – methylation of rRNA in G-ve orgsCo-resistance to S, M, L and P.Class B – methylation of rRNA in G-ve orgsCo-resistance genes (vgaA, vgaC)Chromosomal mutations P </td <td>Aminoglycosides</td> <td>rRNA – binds to 30S subunit, so</td> <td>Phosphorylation, adenylation and acetylation of</td>	Aminoglycosides	rRNA – binds to 30S subunit, so	Phosphorylation, adenylation and acetylation of
Neomycin, Kanamycin Apramycin, gentamicin AmikacinPrevents protein production. Effect on cell membrane permeabilitybinding. Streptomycin – single binding site Others – multiple binding sites, slow resistance, primarily plasmidAminocylitol SpectinomycinrRNA – binding to 50S subunit. Inhibits transpeptidation. Prevents protein productionMethylation of rRNA in G+ve orgs (<i>ermA, ermB, ermC</i> genes) inhibits binding. Co-resistance possible (<i>mSB</i>). Active efflux (<i>mef</i> gene) Enzymatic inactivation possibleTulathromycin (13C)rRNA – binding to 50S subunit. Inhibits petidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding. Co-resistance possible (<i>mIsB</i>). Drug inactivation possibleStreptogramins (S) VirginiamycinrRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of 7RNA in G+ve orgs Co-resistance possible (<i>mIsB</i>). Drug inactivation possiblePleuromutilins (P) Thiamulin, valnemulinrRNA – binding to 50S subunit. Prevents protein production A and B classClass A – active efflux and drug inactivation (<i>vgaA, vgaC, msrA</i> genes) Co-resistance to 23 subunit of rRNA (<i>erm</i> genes)Pleuromutilins (P) ThiamphenicolsrRNA – binding to 50S subunit. Prevents protein production Submit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance to 23 subunit of rRNA (<i>erm</i> genes)Pleuromutilins (P) ThiamphenicolsrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistanc	Streptomycin	misreads genetic code.	aminoglycoside (aph, aad, aac genes) stops them
Apramycin, gentamicin Aminozylitol SpectinomycinEffect on cell membrane permeabilityStreptomycin (Streptomycin emile binding site Others – multiple binding sites, slow resistance, primarily plasmidMacrolides/azalides (M) Tylosin, tyluasin, tilmicosin (16C)rRNA – binding to 50S subunit. Inhibits transpeptidation. Prevents protein productionMethylation of rRNA in G+ve orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible (msB). Active efflux (mef gene) Enzymatic inactivation possibleUncosamides (L) Lincomycin, (13C)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding. Co-resistance possible (mlsB). Drug inactivation possibleStreptogramins (S) VirginiamycinrRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of 7RNA in G+ve orgs Co-resistance to S, M, L and P. Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of rRNA in G+ve orgsPleuromutilins (P) Thiamylenicol, florfenicol Subunit. Thiamylenicol, florfenicolrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production subunit. Inhibits peptidyl transferase. Prevents protein productionCo-resistance genes) Co-resistance genes) Co-resistance genes (vgaA, vgaC)Sulphonamides SulphonamidesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations at target site and increased permeability barriersSulphonamides Thiamphenicol, florfenicolPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but p	Neomycin, Kanamycin	Prevents protein production.	binding.
AmikacinpermeabilityOthers - multiple binding sites, slow resistance, primarily plasmidAminocylitol SpectinomycinrRNA - binding to S0S subunit. Inhibits transpeptidation. Prevents protein productionMethylation of rRNA in G+we orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible (m/sB). Active efflux (mef gene) Enzymatic inactivation possibleTulathromycin (15C) Erythromycin (13C)rRNA - binding to S0S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of rRNA in G+we orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible (m/sB). Drug inactivation possibleStreptogramins (S) VirginiamycinrRNA - binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+we orgs Co-resistance possible (m/sB). Drug inactivation possiblePleuromutilins (P) Tiamulin, valnemulin Inhibits peptidyl transferase. Prevents protein production A and B classCo-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes) Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P) Tiamulin, valnemulin Inhibits peptidyl transferase. Prevents protein productionAcetylation of rRNA in G+we orgs Co-resistance enes (wgaA, vgaC)Sulphonamides SulphonamidesPurine synthesis for DNA. Interferes folic synthesisAcetylation of rdrug in activation starget site and increased permeability barriersDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (d/f gene). Often transpoon or integron <br< td=""><td>Apramycin, gentamicin</td><td>Effect on cell membrane</td><td>Streptomycin – single binding site</td></br<>	Apramycin, gentamicin	Effect on cell membrane	Streptomycin – single binding site
Aminocylitol Spectinomycinprimarily plasmidSpectinomycinrRNA – binding to 50S subunit. Inhibits transpeptidation. Prevents protein production Tulathromycin (15 & 13C) Azithromycin (13C)Methylation of rRNA in G+ve orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible (m/sB). Active efflux (mef gene) Enzymatic inactivation possibleLincosamides (L) Lincomanides (L)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding. Co-resistance possible (m/sB). Drug inactivation possibleStreptogramins (S) VirginiamycinrRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to 5, M, L and P. Class B – methylation of rRNA in G+ve orgsPleuromutilins (P) Thiamphenicol, florfenicolrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B classChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance to 5, M, L and P. Class B – methylation of rRNA in G+ve orgsPleuromutilins (P) Thiamphenicol, florfenicolrRNA – binds irversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein production SulphonamidesChromosomal mutations – stepwise metiater estistance more common. Bypass blocked pativation of drug in enterobacteria (catA gene) prevents grotein productionSulphonamidesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked patiwa by resistant dih	Amikacin	permeability	Others – multiple binding sites, slow resistance,
SpectiomycinrRNA – binding to 50S subunit. Inhibits transpeptidation. Prevents protein productionMethylation of rRNA in G+ve orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible (mSB). Active efflux (mef gene) Enzymatic inactivation possibleLincosamides (L) Lincomycin, clindamycinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding. Co-resistance possible (m/SB). Drug inactivation possibleStreptogramins (S) VirginiamycinrRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Co-resistance possible (m/SB). Drug inactivation possiblePleuromutilins (P) Tiamphenicol, florfenicolrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B classChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance to 5, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P) Tiamphenicol, florfenicolrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B classChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (ygaA, ygaC)Chloramphenicol, florfenicol SulphonamidesrRNA – bindis irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropfolate reductase (gfr gene). Often transposon or integron encoded on plasmid or chromosomeSulphonamides SulfadiazinePurine synthesis for D	Aminocylitol		primarily plasmid
Macrolides/azalides (M) Tylosin, tylvalosin, tilmicosin (15C)rRNA - binding to S0S subunit. Inhibits transpeptidation. Prevents protein productionMethylation of rRNA in G-ve orgs (ermA, ermB, ermC genes) inhibits binding. Co-resistance possible Enzymatic inactivation possibleTulathromycin (15C) Erythromycin (13C)rRNA - binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding. Co-resistance possible (m/sB). Drug inactivation possibleStreptogramins (S) VirginiamycinrRNA - binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B ClassMethylation of rRNA in G-ve orgs Co-resistance possible (m/sB). Drug inactivation possiblePleuromutilins (P) Tiamulin, valnemulinrRNA - binding to 50S subunit. Prevents protein production A and B ClassMethylation of rRNA in G-ve orgs Co-resistance to S, M, L and P. Class B - methylation of rRNA (erm genes)Pleuromutilins (P) Tiamulin, valnemulinrRNA - binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B classCo-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA - bindis irreversiby to 50S subunit. Inhibits peptidyl transferase.Co-resistance genes (vgaA, vgaC)Sulphonamides SulphonamidesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul2 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthe	Spectinomycin		
Tylosin, tylvalosin, tilmicosin (16C)Inhibits transpeptidation. Prevents protein productionermC genes) inhibits binding. Co-resistance possible (m/sB). Azithromycin (15C) Enzymatic inactivation possibleLincosamides (L)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding.Lincosamides (L)rRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of 23S subunit of rRNA, in G+ve orgs Prevents protein production A and B classVirginiamycinPrevents protein production A and B classCo-resistance possible (Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of rRNA in G+ve orgsPleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B classCo-resistance to S, M, L and P. Class B – methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Choramphenicols Thiamphenicol, florfenicol Subunit. Inhibits peptidyl transferase. Prevents protein productionCo-resistance genes (vgaA, vgaC)Sulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations at target site and increased permeability barriersDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations at target site and increased permeability barriersDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations or integr	Macrolides/azalides (M)	rRNA – binding to 50S subunit.	Methylation of rRNA in G+ve orgs (ermA, ermB,
(16C)Prevents protein production(m/sB).Tulathromycin (15 & 13C)Active offlux (mef gene)Active offlux (mef gene)Azithromycin (13C)Enzymatic inactivation possibleLincosamides (L)rRNA – binding to 50S subunit.Methylation of 23S subunit of rRNA, preventsLincomycin, clindamycinrRNA – binding to 50S subunit.Methylation of 23S subunit of rRNA, preventsDirag inactivation possibleDrug inactivation possibleCo-resistance possible (m/sB).Streptogramins (S)rRNA – binding to 50S subunit.Methylation of rRNA in G+ve orgsVirginiamycinPrevents protein productionClass A – active efflux and drug inactivation (vgaA, vgaC, msrA genes)Co-resistance to S, M, L and P.Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P)rRNA – binding to 50S subunit.Chromosomal mutations – stepwiseTiamulin, valnemulinInhibits peptidyl transferase.Methylation of rRNA in G+ve orgsThiamphenicolsrRNA – bindis irreversibly to 50SAcetylation of drug in enterobacteria (catA gene)SulphonamidesPurine synthesis for DNA.Chromosomal mutations – stepwiseSulfadiazinePurine synthesis for DNA.Chromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydrofolate interferes folic synthesisBypass blocked pathway by resistant dihydrofolate indivdrofolateSulphonamidesPurine synthesis for DNA.Bypass blocked pathway by resistant dihydrofolate interferes folic synthesisBypass blocked pathway by resistant dihydrofolate indivdrofolate interfer	Tylosin, tylvalosin, tilmicosin	Inhibits transpeptidation.	ermC genes) inhibits binding. Co-resistance possible
Tulathromycin (15 & 13C) Azithromycin (15C) Erythromycin (13C)Active efflux (mef gene) Enzymatic inactivation possibleErythromycin (13C)RNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding. Co-resistance possible (mlsB). Drug inactivation possibleStreptogramins (S) VirginiamycinrRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Co-resistance to 5, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance to 5, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionActival dind, Plasmid transmission. Efflux (cm/A, floR genes); mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chro	(16C)	Prevents protein production	(mlsB).
Azithromycin (13C)Enzymatic inactivation possibleErythomycin (13C)rRNA – binding to 50S subunit.Methylation of 23S subunit of rRNA, preventsLincosamides (L)Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, preventsStreptogramins (S)rRNA – binding to 50S subunit.Methylation of rRNA in G+ve orgsVirginiamycinA and B classCo-resistance possible (mlsB). Drug inactivation possiblePrevents protein productionA and B classVigas A – active efflux and drug inactivation (vgaA, vgaC, msrA genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgsPleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgsThiamulin, valnemulinrRNA – bindis rreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamidesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)DiaminopyrimidinesPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or inte	Tulathromycin (15 & 13C)		Active efflux (<i>mef</i> gene)
Erythromycin (13C)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein production A and B classMethylation of 23S subunit of rRNA, prevents binding. Co-resistance possible (mlsB). Drug inactivation possibleStreptogramins (S)rRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Nethylation of rRNA in G+ve orgs Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Chloramphenicols Thiamphenicol, florfenicolrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionActelylation of rRNA in G+ve orgs Co-resistance to S, M, L and P. Class B – methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Sulphonamides SulfadiazinePrevents protein productionChromosomal mutations – stepwise ntransferase. Prevents protein productionDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisTarget modification – DNA gyrase (gyrA and gyrB) one step resistanc	Azithromycin (15C)		Enzymatic inactivation possible
Lincosamides (L)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionMethylation of 23S subunit of rRNA, prevents binding.Lincomycin, clindamycinPrevents protein production Prevents protein productionCo-resistance possible Drug inactivation possibleStreptogramins (S)rRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Co-resistance to S, M, L and P. Class A – active efflux and drug inactivation (vgaA, A and B classPleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)ChloramphenicolsrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionCo-resistance genes (vgaA, vgaC)SulphonamidesrRNA – binding to 50S subunit. Interferes folic synthesis for DNA. Interferes folic synthesis for DNA.Acetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid ransmission. Efflux (cmIA, floR genes); mutations at target site and increased permeability barriersDiaminopyrimidinesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropfolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeDiaminopyrimidinesInterrupts DNA breakage-renuion step by binding DNA-gyrase or topoisomerase II (subunits GyrA gares or topoisomerase II (subunits GyrA gares or topoisomerase II (subunits GyrA gares or topoisomerase	Erythromycin (13C)		
Lincomycin, clindamycinInhibits peptidyl transferase. Prevents protein productionbinding. Co-resistance possible (mlsB). Drug inactivation possibleStreptogramins (S)rRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (err genes)Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmIA, floB genes); mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthesis (sulf1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance.	Lincosamides (L)	rRNA – binding to 50S subunit.	Methylation of 23S subunit of rRNA, prevents
Prevents protein productionCo-resistance possible (mlsB). Drug inactivation possibleStreptogramins (S)rRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAccelvation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at arget site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydroplate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolonesInterrupts DNA breakage-reuno topoisomerase II (subunits GyrABypass blocked pathway by resistant dihydrofolate resistance + parC & parE - complete resistance.	Lincomycin, clindamycin	Inhibits peptidyl transferase.	binding.
Streptogramins (S)rRNA – binding to 50S subunit.Drug inactivation possibleVirginiamycinPrevents protein production A and B classMethylation of rRNA in G+ve orgsVarge, msrA genes)Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgsClass B – methylation of 23S subunit of rRNA (erm genes)Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Co-resistance genes (vgaA, vgaC)ChloramphenicolsrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmIA, floR genes); mutations at target site and increased permeability barriersSulphonamidesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthesis (sul1, sul2, sul2 genes)DiaminopyrimidinesPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolonesInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyra		Prevents protein production	Co-resistance possible (<i>mlsB</i>).
Streptogramins (S) VirginiamycinrRNA – binding to 50S subunit. Prevents protein production A and B classMethylation of rRNA in G+ve orgs Class A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (d/r gene). Often transposon or integron encoded on plasmid or chromosomeDiaminopyrimidines Trimethoprim, ormethoprimInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete			Drug inactivation possible
VirginiamycinPrevents protein production A and B classClass A – active efflux and drug inactivation (vgaA, vgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interfures folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrABrage modificato + parC & parE - complete resistance.	Streptogramins (S)	rRNA – binding to 50S subunit.	Methylation of rRNA in G+ve orgs
A and B classvgaC, msrA genes) Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) on estep resistance + parC & parE – complete resistance.	Virginiamycin	Prevents protein production	Class A – active efflux and drug inactivation ($vgaA$,
Co-resistance to S, M, L and P. Class B – methylation of 23S subunit of rRNA (erm genes)Pleuromutilins (P)rRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – bindis irreversibly to 50S subuit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Sulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene.) Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.		A and B class	vgaC, msrA genes)
Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cm/A, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesia for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.			Co-resistance to S, M, L and P.
Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cm/A, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.			Class B – methylation of 23S subunit of rRNA (erm
Pleuromutilins (P) Tiamulin, valnemulinrRNA – binding to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionChromosomal mutations – stepwise Methylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete			genes)
Tiamulin, valnemulinInhibits peptidyl transferase. Prevents protein productionMethylation of rRNA in G+ve orgs Co-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.	Pleuromutilins (P)	rRNA – binding to 50S subunit.	Chromosomal mutations – stepwise
Prevents protein productionCo-resistance genes (vgaA, vgaC)Chloramphenicols Thiamphenicol, florfenicolrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (catA gene) prevents drug binding. Plasmid transmission. Efflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.	Tiamulin, valnemulin	Inhibits peptidyl transferase.	Methylation of rRNA in G+ve orgs
ChloramphenicolsrRNA – binds irreversibly to 50S subunit. Inhibits peptidyl transferase. Prevents protein productionAcetylation of drug in enterobacteria (<i>catA</i> gene) prevents drug binding. Plasmid transmission. Efflux (<i>cmlA, floR</i> genes); mutations at target site and increased permeability barriersSulphonamidesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (<i>sul1, sul2, sul3</i> genes)DiaminopyrimidinesPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (<i>dfr</i> gene). Often transposon or integron encoded on plasmid or chromosomeQuinolonesInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (<i>gyrA</i> and <i>gyrB</i>) one step resistance.		Prevents protein production	Co-resistance genes (vgaA, vgaC)
Thiamphenicol, florfenicolsubunit. Inhibits peptidyl transferase. Prevents protein productionprevents drug binding. Plasmid transmission. Efflux (<i>cmlA, floR</i> genes); mutations at target site and increased permeability barriersSulphonamidesPurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (<i>sul1, sul2, sul3</i> genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (<i>dfr</i> gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (<i>gyrA</i> and <i>gyrB</i>) one step resistance + <i>parC</i> & <i>parE</i> – complete resistance.	Chloramphenicols	rRNA – binds irreversibly to 50S	Acetylation of drug in enterobacteria (<i>catA</i> gene)
transferase. Prevents protein productionEfflux (cmlA, floR genes); mutations at target site and increased permeability barriersSulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisEfflux (cmlA, floR genes); mutations at target site and increased permeability barriersDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisEfflux (cmlA, floR genes); mutations at target site and increased permeability barriersDiaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.	Thiamphenicol, florfenicol	subunit. Inhibits peptidyl	prevents drug binding. Plasmid transmission.
Prevents protein productionand increased permeability barriersSulphonamidesPurine synthesis for DNA.Chromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)DiaminopyrimidinesPurine synthesis for DNA.Bypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolonesInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete		transferase.	Efflux (<i>cmlA</i> , <i>floR</i> genes); mutations at target site
Sulphonamides SulfadiazinePurine synthesis for DNA. Interferes folic synthesisChromosomal mutations but plasmid and integron- mediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.		Prevents protein production	and increased permeability barriers
SulfadiazineInterferes folic synthesismediated resistance more common. Bypass blocked pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)Diaminopyrimidines Trimethoprim, ormethoprimPurine synthesis for DNA. Interferes folic synthesisBypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolones Nalidixic acid, oxolinic acidInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.	Sulphonamides	Purine synthesis for DNA.	Chromosomal mutations but plasmid and integron-
DiaminopyrimidinesPurine synthesis for DNA.pathway by resistant dihydropteroate synthetase (sul1, sul2, sul3 genes)DiaminopyrimidinesPurine synthesis for DNA.Bypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosomeQuinolonesInterrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrATarget modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete	Sulfadiazine	Interferes folic synthesis	mediated resistance more common. Bypass blocked
Diaminopyrimidines Purine synthesis for DNA. Bypass blocked pathway by resistant dihydrofolate Trimethoprim, ormethoprim Interferes folic synthesis Bypass blocked pathway by resistant dihydrofolate Quinolones Interrupts DNA breakage-reunion Target modification – DNA gyrase (gyrA and gyrB) Nalidixic acid, oxolinic acid step by binding DNA-gyrase or one step resistance + parC & parE – complete		,	pathway by resistant dihydropteroate synthetase
Diaminopyrimidines Purine synthesis for DNA. Bypass blocked pathway by resistant dihydrofolate reductase (dfr gene). Often transposon or integron encoded on plasmid or chromosome Quinolones Interrupts DNA breakage-reunion step by binding DNA-gyrase or topoisomerase II (subunits GyrA Target modification – DNA gyrase (gyrA and gyrB) one step resistance + parC & parE – complete resistance.			(sul1, sul2, sul3 genes)
Trimethoprim, ormethoprim Interferes folic synthesis reductase (<i>dfr</i> gene). Often transposon or integron encoded on plasmid or chromosome Quinolones Interrupts DNA breakage-reunion Target modification – DNA gyrase (<i>gyrA</i> and <i>gyrB</i>) Nalidixic acid, oxolinic acid step by binding DNA-gyrase or topoisomerase II (subunits GyrA one step resistance + <i>parC</i> & <i>parE</i> – complete	Diaminopyrimidines	Purine synthesis for DNA.	Bypass blocked pathway by resistant dihydrofolate
Quinolones Interrupts DNA breakage-reunion Target modification – DNA gyrase (gyrA and gyrB) Nalidixic acid, oxolinic acid step by binding DNA-gyrase or topoisomerase II (subunits GyrA one step resistance + parC & parE – complete	Trimethoprim, ormethoprim	Interferes folic synthesis	reductase (<i>dfr</i> gene). Often transposon or integron
Quinolones Interrupts DNA breakage-reunion Target modification – DNA gyrase (gyrA and gyrB) Nalidixic acid, oxolinic acid step by binding DNA-gyrase or topoisomerase II (subunits GyrA one step resistance + parC & parE – complete		,	encoded on plasmid or chromosome
Nalidixic acid, oxolinic acid step by binding DNA-gyrase or topoisomerase II (subunits GyrA one step resistance + parC & parE - complete	Quinolones	Interrupts DNA breakage-reunion	Target modification – DNA gyrase (avrA and avrB)
topoisomerase II (subunits GyrA resistance.	Nalidixic acid, oxolinic acid	step by binding DNA-gyrase or	one step resistance + parC & parE - complete
······································		topoisomerase II (subunits GvrA	resistance.
Fluoroguinolones & GyrB) topoisomerase IV (ParC Nalidixic acid resistance - <i>avrA</i> mutation only	Fluoroguinolones	& GyrB) topoisomerase IV (ParC	Nalidixic acid resistance - <i>avrA</i> mutation only
Flumequine & Par E subunits) Decreased permeability – outer membrane porins	Flumequine	& Par E subunits)	Decreased permeability – outer membrane porins
Norfloxacin mutations (<i>omnF</i>)	Norfloxacin		mutations (<i>ompF</i>)
Enrofloxacin ciprofloxacin	Enrofloxacin, ciprofloxacin		Efflux pumps
marbofloxacin Resistance nrimarily clonal but recently found	marbofloxacin		Resistance primarily clonal but recently found
nlasmid gene (<i>anr</i>) on integron Campylobacter only			plasmid gene (<i>anr</i>) on integron Campylobacter only
have topoisomaerase II, so one sten resistance			have topoisomaerase II, so one step resistance

Simply, the bacterium is constructed of an outer cell wall of variable thickness with an inner cell membrane. It has chromosomal DNA in a tightly coiled chain, which controls growth and multiplication. The DNA sends messages to the ribosome (rRNA 50S subunit and 30S subunit) via

messenger RNA (mRNA) to produce polypeptides or proteins for growth. Transfer RNA (tRNA) carries the amino acids to the ribosome to form the new proteins. When the bacterium is ready to divide the DNA uncoils and divides and a new bacterial cell is formed. Some bacteria multiply rapidly, like *E. coli* and some grow slowly like *Brachyspira* spp. The rapid, prolific growers have more of a chance to develop new **DNA mutants** and these mutations may increase resistance to antibiotics. All the bacterial structures can be targets for antimicrobial attack. The penicillins or beta-lactam antibiotics target the cell wall, the polymixins the cell membrane, the fluoroquinolones the DNA and the tetracyclines, macrolides, pleuromutilins, aminoglycosides the RNA.

Bacteria are routinely classified as **Gram positive** (blue staining with Gram stain - due to a thick cell wall) these include *Staphylococcus* spp, *Streptococcus* spp, *Enterococcus* spp and *Clostridium* spp. **Gram-negative** (pink staining – thin cell wall) bacteria are primarily found in the gut, such as *E. coli, Salmonella* spp, or in the respiratory tract *Actinobacillus pleuropneumoniae, Pasteurella multocida* and *Haemophilus parasuis*. They are further divided into **aerobic** (need oxygen to survive) or **anaerobic** where they do not use oxygen and have different metabolic pathways. *Enterococcus* spp and *Clostridium* spp are examples of Gram +ve anaerobic bacteria and are found in the large intestine or colon and *Brachyspira* spp are examples of Gram –ve anaerobic bacteria, also found in the colon. Some bacteria can live in both environments, like *E. coli*. The commonly monitored bacteria for public health and regulatory resistance monitoring are the **commensal bacteria**, such as *E. coli* and *Enterococcus* spp, and *Salmonella* spp (mainly *S*. Typhimurium in pigs) and *Campylobacter* spp (mainly *C. coli* in pigs) for potential **zoonotic infections**, those infections in animals that cause disease in man.

Resistance mechanisms

When we look at antimicrobial resistance there are some other key factors to consider. Some bacteria are **intrinsically resistant** to certain antibiotics, usually due to their mode of action. For example penicillins, which act on the cell wall of a bacterium, are not effective against *Mycoplasma* spp, as they do not have a cell wall, only a cell membrane. Macrolides, like tylosin, cannot penetrate the cell membranes of certain Gram -ve bacteria like *E. coli*; aminoglycosides work poorly against anaerobic bacteria, as they use an oxygen-dependent mechanism to penetrate the bacteria. Susceptible bacteria can **acquire resistance** by a variety of mechanisms: -

1. Prevent an antimicrobial substance reaching a target by **reducing its penetration** into the bacterial cell often via **porin** changes, as they are often large molecules

General or specific efflux pump mechanism to expel antimicrobial agents from the bacterial cell
 Antimicrobial agent inactivated by modification or degradation either before or after penetrating the cell

4. Antimicrobial **target may be modified** so that it cannot act on it, or the microorganism's activation or acquisition of an alternative pathway rendering the target dispensable (see Figure 1.)

Figure 1. Common mechanisms of resistance development

Picture courtesy of A. Pridmore

Acquired resistance can be achieved by a number of mechanisms, which are usually the result of selection pressure from the use of antibiotics. Mutations in the chromosomal DNA, which then alter the DNA coiling etc, are important for the fluoroquinolones. DNA changes which affects the binding sites of the ribosome are important for the macrolides, lincosamides, streptogramins and pleuromutilins and co-resistance can occur between these families, as their sites of action often are close or overlap. The acquisition of **resistance genes** from outside the bacterial cell is also highly important. Some bacteria pick up extraneous DNA genes from other broken down cells by transformation and insert them into the chromosome. Others receive DNA into the chromosome via transduction from viral bacteriophages but the most common route is via plasmid transfer at conjugation of two cells. The plasmid can be independent of the chromosome in the cell and made up of a variety of DNA genes or open-reading frames (ORFs), which may be significant or not. Plasmids can carry multiple-resistance genes, which are often carried in transposons or integrons, which are sections of genetic material that can insert themselves via enzymes transposases and integrases, respectively, usually into plasmids but also into the chromosome of a bacterium. This is a very common route of resistance transmission between enteric bacteria, like E. coli; hence they are good indicators for monitoring resistance.

MRSA - the first major controversy

The penicillins or beta-lactam antibiotics have been the recent cause of concern following the discovery of methicillin-resistant *Staphylococcus aureus* (MRSA) infections, mainly clonal complex CC398, spreading in piggeries to the pig farmers and their families and also slaughterhouse workers and veterinarians. These were picked up originally in the Netherlands when farmers attended hospital and were screened for human MRSA. Fortunately in man, it does not appear to have spread into the general population. It has been shown that this strain has spread across Europe possibly associated with pig movement (EFSA, 2010) down breeding pyramids and in growing pigs but also by

selection from the use of advanced beta-lactams, such as the 3rd generation cephalosporins, which are becoming commonly used in some countries at processing (castration etc). When originally used in man, penicillin use soon caused resistance development, especially in Gram +ve infections such as Staphylococci and they produced resistant penicillinases (beta-lactamases), enzymes that destroyed the penicillin molecule. Newer penicillins, which were beta-lactamase resistant, such as methicillin were introduced. To survive, the Staphylococci mutated and changed the enzymes in the cell wall, where the penicillins bound (penicillin-binding proteins – PPB). This was associated with the new *mec*A gene in the chromosome and this meant that none of the penicillins or cephalosporins was effective. Generally, the strains in pigs are different from the MRSA clones found in man, particularly those associated with hospital treatment but it was a cause of concern, especially as there are few other drugs that the doctors can use to treat them.

ESBLs - the next major controversy

Ampicillin and amoxycillin were two extended or broad spectrum penicillins that treated Gram +ve and Gram –ve bacteria. As usage has increased, resistance has developed especially in *E. coli*, due to beta lactamase production (see Figure 3). It was found that these could be blocked by the use of beta-lactamase inhibitors, such as clavulanic acid, which irreversibly bound to these enzymes and allowed the antibiotic to carry on working. This combination approach is commonly used in veterinary and human medicine. However, what has caused some confusion is the term extendedspectrum beta lactamases (ESBLs), as these refer to beta-lactamase enzymes that attack 3rd and 4th generation cephalosporins. These are the next major controversy, as the genes can be transmitted via plasmids, relatively easily, amongst enteric bacteria such as E. coli and potentially Salmonella spp. These enzymes are usually susceptible to beta-lactamase inhibitors but some are developing resistance. Some cephalosporinase resistance genes, AmpC, are not susceptible to these inhibitors. These bacteria can be treated in human medicine by carbapenems but of considerable concern, carbapenemase-resistant bacteria are now being reported in human cases in Asia and have arrived in human medicine in Europe. Fortunately, these antibiotics are not used in veterinary medicine. Of significant interest, ESBLs associated with cephalosporin use were looked for in poultry, pigs and cattle (EFSA – BIOHAZ, 2011) in EU Member states (see Figure 2).

Figure 2. Survey results of ESBL prevalence in *E. coli* and *Salmonella* spp in the EU by species

Surprisingly, the highest level of ESBL resistance was in chickens not pigs or cattle, but it was present at low levels. Apparently, chicks are injected in-ovo or at day old and even if not used at broiler chick level the resistant organisms have been shown to come down the breeding pyramid from imported birds into Sweden, as the drugs were not used there (SVARM 2010, 2011). Spain had the highest reported prevalence of ESBL resistance in *E. coli* from chickens at 26.4% but only 1.1% in pigs and 0.4% in cattle. As the cephalosporins are not approved for use in chickens nor is there a MRL (maximum residue limit) perhaps a good method of control would be to stop their off-label use in poultry.

In a different EU survey (EFSA/ECDC) they compared antimicrobial resistance found in humans with that in animals for zoonotic bacteria *Salmonella* spp and *Campylobacter* spp. *Salmonella enterica* Typhimurium infections in man are thought to be primarily associated with the consumption of pork (see Figure 3). *Salmonella* Enteritidis from poultry is still the major cause of salmonellosis in man.

Figure 3. Comparison of antimicrobial resistance in S. Typhimurium from humans, pigs and poultry

In this case, resistance to ampicillin and the tetracyclines is high in pigs but to cefotaxime (3rd generation cephalosporin (ESBL resistance marker) it is very low. The fluoroquinolone, ciprofloxacin, resistance is also high in poultry but low in pigs. In this case, *S*. Typhimurium resistance patterns in man are generally similar to pig resistance patterns, suggesting that it is a significant contributor in comparison with poultry. Figure 3 also nicely demonstrates the lack of ESBL selection by other antibiotic use, other than cephalosporins.

In the case of *Campylobacter coli* the resistance pattern is reversed (see Figure 4).

Figure 4. Comparison of antimicrobial resistance in C. coli from humans, pigs and poultry

The resistance patterns in man, especially to the macrolide, erythromycin, are more similar to poultry than pig. This can be explained by the fact that most broiler carcasses are infected with both *C. jejuni* and *C. coli* and they are primarily responsible for the infection in man. Treatment of pig carcasses (cooling etc) helps reduce the contamination level almost to zero and the risk of transmission of *C. coli* is therefore very low (Burch, 2002). Of interest, fluoroquinolone resistance is higher than for *S. Typhimurium* as it is a one-step mutation that leads to full resistance in *Campylobacter* spp.

Conclusions

There are some major issues concerning antimicrobial use and resistance development and the possible spread of these resistant organisms or genes to man. MRSA has been a real wake-up warning to a number of factors. How we use cephalosporins in pigs and other species but also the trading routes for pigs and poultry and the spread of resistant clones across Europe. Monitoring of ESBL resistance in *E. coli* in Europe has identified that the risk from pigs is relatively small but in chickens it is much higher. This is of concern as cephalosporins are not approved for use in chickens in the EU. This should be the first point of control. It also demonstrates that high resistance to other antibiotics has little impact on ESBL resistance development, a point ignored by the Dutch control proposals.

With regard to zoonotic infections and resistance transfer to man, pigs do appear to play a role in *S*. Typhimurium transmission but from an ESBL perspective the risk is very small. Regarding *Campylobacter coli* the risk of fluoroquinolone resistance transmission would appear to be high but in fact it is very low as few organisms are transmitted via pig meat. Poultry meat, which is the major transmitter of *C. jejuni*, is also the major risk for *C. coli*. Possibly, it is a more urgent area for control and improvement.

Responsible use of antimicrobials must be the way forward for veterinary medicine. Reduce overall use by all means, it will improve the clinical antimicrobial resistance situation and improve therapy. Improve management and housing and use vaccines more. Movement of animals and biosecurity on a farm and international basis would also appear to be of major significance. Restricting use of antimicrobial products in accordance with their SPCs (summary of product characteristics) is

important i.e. do not use cephalosporins as frontline drugs or use them off label but reserve them for when other drugs have failed.

There are many ways in which we can improve animal health and reduce antimicrobial use and target them in a better way. However, one thing is for sure, if we do not do put our house in order then the legislators/regulators will and not necessarily in a scientific way, that will help pig production.