D NOVARTIS Animal Health

PHARMACOKINETICS AND PHARMACODYNAMICS (PK/PD) OF FLORFENICOL ADMINISTERED ORALLY AGAINST COMMON SWINE PATHOGENS

David Burch¹, Ulrich Klein² ¹Octagon Services Ltd, Old Windsor, Berkshire, UK; ²Novartis Animal Health Inc., Basel, Switzerland

Introduction:

Florfenicol has become one of the commonly-used, effective treatments of a variety of porcine pathogens such as *Actinobacillus pleuropneumoniae, Pasteurella multocida, Haemophilus parasuis* and *Streptococcus suis*. It is available in a variety of formulations such as an injectable, feed premix and soluble product for inclusion in drinking water.

Objective:

The objective of this review was to compare the pharmacokinetics (PK) of florfenicol (Florvio[™] – Novartis Animal Health Inc.) in plasma following administration orally by gavage and via the drinking water with its pharmacodynamics (PD) related to common swine pathogens.

Materials and methods:

Pharmacokinetics:

The PK of florfenicol administered by capsule (Voorspoels *et al.*, 1999) at 15mg/kg bwt showed the product was very well absorbed (see Figure 1) giving a reported concentration maximum (C_{max}) of 14.8µg/ml and area under the curve (AUC 24h) of 100.5µg.h/ml. A predicted absorption curve based on 10mg florfenicol/kg bwt was also included, as this was the recommended dose rate when given in feed with an estimated AUC 24h of 67.3µg.h/ml.

This was surprising, as there was comparatively little difference between the 100ppm and 150ppm florfenicol treated pigs AUC24hs (6.2%). The AUCs were far lower than the single oral dose with a mean at 100ppm of 25.2 μ g.h/ml (37.4% of a 10mg/kg bwt dose by oral gavage) and a mean at 150ppm of 26.8 μ g.h/ml (26.6% of the 15mg/kg bwt oral dose). It was associated with a marked drop in water intake. The mean concentration steady state (Css) for 100ppm in drinking water over 3 days was estimated at 1.05 μ g/ml and at 150ppm 1.12 μ g/ml.

Pharmacodynamics:

The PD for florfenicol (Zolynas *et al.*, 2003) against a range of swine pathogens is summarised in Table 1.

Organism	No of isolates	MIC _{₅0} (µg∕ml)	MIC ₉₀ (µg∕ml)	MIC range
A. pleuropneumoniae	100	0.25	0.5	0.25-1.0
P. multocida	107	0.5	0.5	0.25-0.5
Haemophilus parasuis	36	0.25	0.5	0.12-1.0
Streptococcus suis	62	2.0	2.0	1.0-2.0
Bordetella bronchiseptica	49	2.0	2.0	0.5-2.0
Salmonella spp	36	4.0	4.0	2.0-4.0
Mycoplasma hyopneumoniae	14	2	8	0.5-8.0
Mycoplasma hyorhinis	24	2	4	0.5-8.0

Table 1. Florfenicol activity against a range of swine pathogens (Zolynas et al., 2003)

Florfenicol showed a high level of activity against A. pleuropneumoniae and H. parasuis with

Figure 1. PK of florfenicol after a single administration at 15mg/kg bwt and predictive curve at 10mg/kg bwt (after Voorspoels *et al.*, 1999)

When florfenicol was administered in drinking water (Gutierrez *et al.*, 2011) for 3 days at 100 and 150ppm (normally the approximate equivalent dose to 10 & 15mg/kg bwt) a much lower plasma concentration than expected was achieved (see Figure 2). The reported AUC 24h for day 1, 2 & 3 at 100ppm florfenicol was 28.3, 25.7 and 21.6µg.h/ml and 29.8, 27.6 and 22.9µg.h/ml at 150ppm florfenicol.

 MIC_{50} s and MIC_{90} s of 0.25 and 0.5µg/ml, respectively; for *P. multocida*, the MIC_{50} and MIC_{90} was both 0.5µg/ml, and for *S. suis* and *B. bronchiseptica* both were 2.0µg/ml, respectively.

Pharmacokinetic / Pharmacodynamic relationship

The PK/PD relationship of florfenicol in plasma following administration in the drinking water at 100ppm was compared with the MIC_{90} of *A. pleuropneumoniae*, *H. parasuis*, *P. multocida* and *S. suis* (see Figure 3).

Figure 3. PK/PD relationship of florfenicol administered at 100ppm in water with the MIC₉₀ of various pig pathogens

Results and conclusions:

Figure 2. Comparison of florfenicol plasma concentrations following oral gavage at 10mg/kg bwt and 100ppm administered in the drinking water (after Voorspoels *et al.*, 1999; Gutierrez *et al.*, 2011).

Florfenicol administered at 100ppm in the drinking water reached concentrations well in excess of the MIC_{90} for *A. pleuropneumoniae*, *H. parasuis* and *P. multocida* but not the MIC_{50} or MIC_{90} for *S. suis* or *B. bronchiseptica*.

References:

- 1. Voorspoels *et al*., 1999. Vet. Record, 145, 397-399.
- 2. Gutierrez *et al.*, 2011. J. Anim. Sci.89, 2926-2931.
- 3. Zolynas, *et al.*, 2003. Proc. AASV Meeting, Orlando, Florida, USA, pp 211-214.

Copyright © Octagon Services Ltd 2013 www.octagon-services.co.uk

Pig and Food Safety Reviews